

ATS-V2CV VALVE

DNE

2-Way Control Valve

If not innovative... It's not ATS

ATS-V2CV VALVE

ATS V2CV is a 2-way control valve provides a high quality, cost effective solution for the control of hot and/or cold chilled water for fan coil units.

Technical Data

- Pressure & temperature diagram
- Markings
- Material of Construction
- Dimensions
- Installation
- Differential Pressure data for DN20 and DN25

Technical data

Control characteristics		Logarithmic
Medium temperature		0 120 °C
Max. operating pressure		20 bar
Connections	DN20	Female M30x1.5-6H &G1
	DN25	Female M32x1.5-6H &G1
Stroke		4 mm
Sizes available		DN20, DN25

Pressure temperature diagram

* ATS reserves the right to change any product specifications without prior notice.

Material of Construction

No.	Part Name	Material
01	Body	DZR
02	Sealing head	EPDM
03	Circlip	1Cr18Ni9Ti
04	O-ring	EPDM
05	Spool sleeve	HPb58-2A
06	Spring	1Cr18Ni9
07	O-ring	EPDM
08	Pressure cap	HPb59-2
09	Washer	H62
10	Spool adjustment cap	HPb58-2A
11	Thrust rod	1Cr18Ni9Ti

* ATS reserves the right to change any product specifications without prior notice.

Dimensions

Size (mm)	A (mm)	B (mm)
DN20	70	29
DN25	82	45.5

Markings

	ATS, flow direction
Valve Body	DN 20, DN 25
	PN 20

* ATS reserves the right to change any product specifications without prior notice.

Installation

Hydraulic connections:

Mount according to flow direction as indicated on the valve body. AB is always the outlet port; inlets is A.

Valve mounting:

Before mounting the valve be sure that the pipes are clean and free from swarf. It is essential that the pipes are lined up squarely with the valve at each connection and are free from vibrations.

The valve should be adequately supported to prevent stress being applied to the connections during operation.

Install the valve so that the actuator will be mounted in a vertical or horizontal position but not over head.

Leave sufficient clearance to allow the dismantling of the actuator from the valve body for maintenance purposes.

The valve must not be installed in an explosive atmosphere or at an ambient temperature higher than 50 °C or lower than 2 °C. It must not be subjected to steam jets, water jets or dripping liquid.

Leave sufficient clearance to allow the dismantling of the actuator from the valve body for maintenance purposes.

The valve must not be installed in an explosive atmosphere or at an ambient temperature higher than 50 °C or lower than 2 °C. It must not be subjected to steam jets, water jets or dripping liquid.

Note that the actuator may be rotated up to 360° with respect to the valve body, by loosening the retaining fixture. After this operation retighten.

Ensure that the direction of flow is correct as shown in typical application examples (fig.1 and 2). If possible the valves should be positioned in the return side.

The valve is supplied complete with installation instructions. The water quality should meet VDI 2035 requirements.

Differential Pressure Data for DN 20MM

Flow rate L/S

Calculation of flow rate :

$$Q = \frac{K_v \sqrt{\Delta P}}{36}$$

Q: Flow rate (L/S)
K_v: Signal coefficient = 1.5
 ΔP : Signal (KPa)

Differential Pressure Data for DN 25MM

Calculation of flow rate :

$$Q = \frac{K_v \sqrt{\Delta P}}{36}$$

Q: Flow rate (L/S)
K_v: Signal coefficient = 3.2
 ΔP : Signal (KPa)